Aiding radiological thorax CT assessments in UZ Leuven using the contextflow AI-based algorithms
Thorax CT assessments in UZ Leuven using AI
The innovation challenge faced by UZ Leuven is the need for advanced diagnostic tools to improve the detection and management of lung cancer, interstitial lung disease (ILD), and chronic obstructive pulmonary disease (COPD). With an annual estimated 15,000 chest CT scans performed in UZ Leuven, integration of automatization and AI-based support strategies is a must. Current diagnostic methods are time-consuming, inter-observer dependent, and sometimes lack the precision or sensitivity required for early detection and accurate characterization of chest abnormalities.
Open call
OC1 EIC Awardee + Buyer (wave1)
Sector
Healthcare
Buyer information
University hospital Leuven (UZ Leuven)
UZ Leuven is Belgium’s largest university hospital, closely affiliated with KU Leuven. IIt operates multiple campuses (Gasthuisberg, Pellenberg, Sint-Rafaël) and has nearly 2,000 beds and over 9,000 staff. Its Radiology Department is embedded in the Medical Imaging Research Center (MIRC), a hub for translational and clinical imaging research.
Solver information
Contextflow
contextflow develops AI-based radiology software that integrates directly into hospital PACS systems. Its CE-marked solution, ADVANCE Chest CT, assists radiologists in detecting, quantifying, and reporting lung diseases such as lung cancer, ILD, and COPD, supporting faster and more consistent diagnosis.
Solution
The contextflow tool is CE-marked (Class IIa) medical device software that uses deep learning models to support radiologists in interpreting chest CT images.
Core Features: The software provides computer-aided detection for lung cancer, ILD, and IPE. Its key functionalities include automated nodule detection, quantification, and tracking; a malignancy risk score (MSI); quantitative analysis of 19 lung tissue patterns; and detection of incidental findings like pulmonary embolism.
Functionalities:
- Lung Pattern Detection (for ILDs): This feature provides advanced computer-aided support for complex cases like Interstitial Lung Disease (ILD) by automatically performing a quantitative and qualitative analysis of 19 different lung tissue image patterns. This helps in the detection and characterization of diffuse lung diseases.
- Lung Nodule Detection: The software automatically scans chest CT images to detect and quantify suspected lung nodules. This core function is designed to assist in the early detection of potential lung cancers.
- Nodule TIMELINE Tracking: For follow-up examinations, this tool automatically recognizes and tracks nodules over time by comparing current scans to previous ones. It provides valuable data on changes in nodule volume and offers RECIST scores to monitor growth or response to treatment.
- Nodule Malignancy Prediction (mSi): The Malignancy Similarity Index (MSI) is an AI-driven feature that calculates a probability score for a detected lung nodule, indicating its likelihood of being benign or malignant. This helps radiologists risk-stratify nodules and may reduce unnecessary biopsies.
- Incidental Pulmonary Embolism (IPE) Detection: Acting as a safety net, this functionality is designed to detect incidental pulmonary embolisms on chest CTs that were ordered for other clinical reasons.
- Similar Case SEARCH: This unique decision-support tool functions like a “Google for lung patterns,” allowing radiologists to search a large database of pre-labelled cases for visually similar patterns. This provides valuable reference cases and differential diagnosis information to aid in complex interpretations.
- As of November 2025 contextflow will add Coronary Artery Calcification (CAC) detection and risk assessment.






Pilot specific details
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus ligula elit, suscipit eget gravida ut, vehicula et quam. Nam dolor lectus, sollicitudin eget pulvinar ac, vestibulum sit amet leo. Cras ut lacinia purus. Ut vitae tincidunt elit, dignissim dignissim eros. Integer viverra imperdiet magna ac sodales. Phasellus tristique gravida justo, eget finibus enim egestas sit amet. Mauris maximus ligula sem. Morbi feugiat eget felis ac placerat. Aenean sit amet quam in dolor efficitur imperdiet vitae eu dolor.
€123.4M
Lorem ipsum
38 SMEs
Lorem ipsum
60.000€
Lorem ipsum
50 Pilots
Lorem ipsum
Testimonials
Name Surname
COMPANY
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus ligula elit, suscipit eget gravida ut, vehicula et quam. Nam dolor lectus, sollicitudin eget pulvinar ac, vestibulum sit amet leo. Cras ut lacinia purus. Ut vitae tincidunt elit, dignissim dignissim eros.
Name Surname
COMPANY
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus ligula elit, suscipit eget gravida ut, vehicula et quam. Nam dolor lectus, sollicitudin eget pulvinar ac, vestibulum sit amet leo. Cras ut lacinia purus. Ut vitae tincidunt elit, dignissim dignissim eros.
Results
€123.4M
Lorem ipsum
38 SMEs
Lorem ipsum
60.000€
Lorem ipsum
50 Pilots
Lorem ipsum
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus ligula elit, suscipit eget gravida ut, vehicula et quam. Nam dolor lectus, sollicitudin eget pulvinar ac, vestibulum sit amet leo. Cras ut lacinia purus. Ut vitae tincidunt elit, dignissim dignissim eros. Integer viverra imperdiet magna ac sodales. Phasellus tristique gravida justo, eget finibus enim egestas sit amet. Mauris maximus ligula sem. Morbi feugiat eget felis ac placerat. Aenean sit amet quam in dolor efficitur imperdiet vitae eu dolor.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus ligula elit, suscipit eget gravida ut, vehicula et quam. Nam dolor lectus, sollicitudin eget pulvinar ac, vestibulum sit amet leo. Cras ut lacinia purus. Ut vitae tincidunt elit, dignissim dignissim eros. Integer viverra imperdiet magna ac sodales. Phasellus tristique gravida justo, eget finibus enim egestas sit amet. Mauris maximus ligula sem. Morbi feugiat eget felis ac placerat. Aenean sit amet quam in dolor efficitur imperdiet vitae eu dolor.